RAW DATA FOR THE IAU NUTATION SERIES 2000B (77 TERMS)

WITH FORMULAS FOR APPLICATION

In the nutation data table below, each data line represents one term in the
respective summation series.

******************************************************************************
NUTATIONS DATA TABLE FOR IAU NUTATION SERIES 2000B

The i column is NOT part of the actual data.  It is the reference index number
of the nutation series terms to which the subsequent 11 data elements apply.

   ARGUMENT MULTIPLIERS       LONGITUDE COMPONENTS      OBLIQUITY COMPONENTS
    L   Lp  F   D   Om         ARC SEC * 10000000        ARC SEC * 10000000
i   m1  m2  m3  m4  m5        AA        BB      CC      DD       EE       FF
1    0   0   0   0   1   -172064161  -174666  33386  92052331   9086    15377
2    0   0   2  -2   2    -13170906    -1675  13696   5730336  -3015    -4587
3    0   0   2   0   2     -2276413     -234   2796    978459   -485     1374
4    0   0   0   0   2      2074554      207   -698   -897492    470     -291
5    0   1   0   0   0      1475877    -3633  11817     73871   -184    -1924
6    0   1   2  -2   2      -516821     1226   -524    224386   -677     -174
7    1   0   0   0   0       711159       73   -872     -6750      0      358
8    0   0   2   0   1      -387298     -367    380    200728     18      318
9    1   0   2   0   2      -301461      -36    816    129025    -63      367
10   0  -1   2  -2   2       215829     -494    111    -95929    299      132
11   0   0   2  -2   1       128227      137    181    -68982     -9       39
12  -1   0   2   0   2       123457       11     19    -53311     32       -4
13  -1   0   0   2   0       156994       10   -168     -1235      0       82
14   1   0   0   0   1        63110       63     27    -33228      0       -9
15  -1   0   0   0   1       -57976      -63   -189     31429      0      -75
16  -1   0   2   2   2       -59641      -11    149     25543    -11       66
17   1   0   2   0   1       -51613      -42    129     26366      0       78
18  -2   0   2   0   1        45893       50     31    -24236    -10       20
19   0   0   0   2   0        63384       11   -150     -1220      0       29
20   0   0   2   2   2       -38571       -1    158     16452    -11       68
21   0  -2   2  -2   2        32481        0      0    -13870      0        0
22  -2   0   0   2   0       -47722        0    -18       477      0      -25
23   2   0   2   0   2       -31046       -1    131     13238    -11       59
24   1   0   2  -2   2        28593        0     -1    -12338     10       -3
25  -1   0   2   0   1        20441       21     10    -10758      0       -3
26   2   0   0   0   0        29243        0    -74      -609      0       13
27   0   0   2   0   0        25887        0    -66      -550      0       11
28   0   1   0   0   1       -14053      -25     79      8551     -2      -45
29  -1   0   0   2   1        15164       10     11     -8001      0       -1
30   0   2   2  -2   2       -15794       72    -16      6850    -42       -5
31   0   0  -2   2   0        21783        0     13      -167      0       13
32   1   0   0  -2   1       -12873      -10    -37      6953      0      -14
33   0  -1   0   0   1       -12654       11     63      6415      0       26
34  -1   0   2   2   1       -10204        0     25      5222      0       15
35   0   2   0   0   0        16707      -85    -10       168     -1       10
36   1   0   2   2   2        -7691        0     44      3268      0       19
37  -2   0   2   0   0       -11024        0    -14       104      0        2
38   0   1   2   0   2         7566      -21    -11     -3250      0       -5
39   0   0   2   2   1        -6637      -11     25      3353      0       14
40   0  -1   2   0   2        -7141       21      8      3070      0        4
41   0   0   0   2   1        -6302      -11      2      3272      0        4
42   1   0   2  -2   1         5800       10      2     -3045      0       -1
43   2   0   2  -2   2         6443        0     -7     -2768      0       -4
44  -2   0   0   2   1        -5774      -11    -15      3041      0       -5
45   2   0   2   0   1        -5350        0     21      2695      0       12
46   0  -1   2  -2   1        -4752      -11     -3      2719      0       -3
47   0   0   0  -2   1        -4940      -11    -21      2720      0       -9
48  -1  -1   0   2   0         7350        0     -8       -51      0        4
49   2   0   0  -2   1         4065        0      6     -2206      0        1
50   1   0   0   2   0         6579        0    -24      -199      0        2
51   0   1   2  -2   1         3579        0      5     -1900      0        1
52   1  -1   0   0   0         4725        0     -6       -41      0        3
53  -2   0   2   0   2        -3075        0     -2      1313      0       -1
54   3   0   2   0   2        -2904        0     15      1233      0        7
55   0  -1   0   2   0         4348        0    -10       -81      0        2
56   1  -1   2   0   2        -2878        0      8      1232      0        4
57   0   0   0   1   0        -4230        0      5       -20      0       -2
58  -1  -1   2   2   2        -2819        0      7      1207      0        3
59  -1   0   2   0   0        -4056        0      5        40      0       -2
60   0  -1   2   2   2        -2647        0     11      1129      0        5
61  -2   0   0   0   1        -2294        0    -10      1266      0       -4
62   1   1   2   0   2         2481        0     -7     -1062      0       -3
63   2   0   0   0   1         2179        0     -2     -1129      0       -2
64  -1   1   0   1   0         3276        0      1        -9      0        0
65   1   1   0   0   0        -3389        0      5        35      0       -2
66   1   0   2   0   0         3339        0    -13      -107      0        1
67  -1   0   2  -2   1        -1987        0     -6      1073      0       -2
68   1   0   0   0   2        -1981        0      0       854      0        0
69  -1   0   0   1   0         4026        0   -353      -553      0     -139
70   0   0   2   1   2         1660        0     -5      -710      0       -2
71  -1   0   2   4   2        -1521        0      9       647      0        4
72  -1   1   0   1   1         1314        0      0      -700      0        0
73   0  -2   2  -2   1        -1283        0      0       672      0        0
74   1   0   2   2   1        -1331        0      8       663      0        4
75  -2   0   2   2   2         1383        0     -2      -594      0       -2
76  -1   0   0   0   2         1405        0      4      -610      0        2
77   1   1   2  -2   2         1290        0      0      -556      0        0
******************************************************************************






===================================================================
Given the JD number corresponding to the date and time in question:


------------------------------------------------------
Compute time in Julian centuries reckoned from J2000.0

T = (JD - 2451545.0) / 36525.0

-------------------
Compute powers of T

T2 = T * T
T3 = T * T2
T4 = T * T3


-----------------------------------------------------------------
Define conversion factor to convert degrees to radians.  Multiply
degrees by this factor to obtain the equivalent radians.  In most
programming languages, trigonometric functions require arguments
to be expressed in radians rather than in degrees.

DegToRad = 3.141592653589793 / 180.0

-----------------------------------
Mean anomaly of the Moon in radians

L  = DegToRad*((485868.249036 + 1717915923.2178*T + 31.8792*T2
   + 0.051635*T3 - 0.00024470*T4) / 3600.0)


----------------------------------
Mean anomaly of the Sun in radians

Lp = DegToRad*((1287104.79305 + 129596581.0481*T
   - 0.5532*T2  + 0.000136*T3 - 0.00001149*T4) / 3600.0)


----------------------------------------------------
Mean argument of the latitude of the Moon in radians

F  = DegToRad*((335779.526232 + 1739527262.8478*T
   - 12.7512*T2 - 0.001037*T3 + 0.00000417*T4) / 3600.0)


---------------------------------------------------
Mean elongation of the Moon from the Sun in radians

D  = DegToRad*((1072260.70369 + 1602961601.2090*T
   - 6.3706*T2  + 0.006593*T3 - 0.00003169*T4) / 3600.0)


-----------------------------------------------------------
Mean longitude of the ascending node of the Moon in radians

Om = DegToRad*((450160.398036 - 6962890.5431*T
   + 7.4722*T2  + 0.007702*T3 - 0.00005939*T4) / 3600.0)


--------------
TERM FORMULAS:

Each data line contains the data for one term of
each nutation series.  The i column is NOT part of
the data.  It is the index of the series term.

There are 11 numerical data elements on each line.

They are:
5 Delaunay argument multipliers  (m1, m2, m3, m4, m5)
3 coefficients for nutation in longitude (AA, BB, CC)
3 coefficients for nutation in obliquity (DD, EE, FF)


--------------------------------------------------
Construct the angular argument for the series term.

arg = (m1*L + m2*Lp + m3*F + m4*D + m5*Om)

--------------------------------------------------
Longitude terms use the AA,BB,CC coefficients from
the data table and take the general form:

dPsiTerm = (AA + BB*T)*sin(arg) + CC*cos(arg)

--------------------------------------------------
Obliquity terms use the DD,EE,FF coefficients from
the data table and take the general form:

dEpsTerm = (DD + EE*T)*cos(arg) + FF*sin(arg)

-------------------------------------------------------------
All terms in each respective series are summed and the result
is divided by 36000000000.0 to obtain the nutation expressed
in decimal degrees (dEpsDeg).